Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: covidwho-1518200

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
2.
Cells ; 10(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1264419

ABSTRACT

In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi's sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Basigin/physiology , SARS-CoV-2/physiology , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basigin/antagonists & inhibitors , Basigin/genetics , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Hep G2 Cells , Host-Pathogen Interactions , Humans , Molecular Targeted Therapy , RNA Interference/physiology , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Receptors, Virus/metabolism , Receptors, Virus/physiology , SARS-CoV-2/metabolism , Vero Cells , Viral Tropism/physiology
3.
Genes (Basel) ; 12(1)2020 12 25.
Article in English | MEDLINE | ID: covidwho-1021948

ABSTRACT

The human serine protease serine 2 TMPRSS2 is involved in the priming of proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a possible target for COVID-19 therapy. The TMPRSS2 gene may be co-expressed with SARS-CoV-2 cell receptor genes angiotensin-converting enzyme 2 (ACE2) and Basigin (BSG), but only TMPRSS2 demonstrates tissue-specific expression in alveolar cells according to single-cell RNA sequencing data. Our analysis of the structural variability of the TMPRSS2 gene based on genome-wide data from 76 human populations demonstrates that a functionally significant missense mutation in exon 6/7 in the TMPRSS2 gene is found in many human populations at relatively high frequencies, with region-specific distribution patterns. The frequency of the missense mutation encoded by rs12329760, which has previously been found to be associated with prostate cancer, ranged between 10% and 63% and was significantly higher in populations of Asian origin compared with European populations. In addition to single-nucleotide polymorphisms, two copy number variants were detected in the TMPRSS2 gene. A number of microRNAs have been predicted to regulate TMPRSS2 and BSG expression levels, but none of them is enriched in lung or respiratory tract cells. Several well-studied drugs can downregulate the expression of TMPRSS2 in human cells, including acetaminophen (paracetamol) and curcumin. Thus, the interactions of TMPRSS2 with SARS-CoV-2, together with its structural variability, gene-gene interactions, expression regulation profiles, and pharmacogenomic properties, characterize this gene as a potential target for COVID-19 therapy.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Gene Expression Regulation, Enzymologic/drug effects , Molecular Targeted Therapy , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Acetaminophen/pharmacology , Acetaminophen/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Asia/epidemiology , Basigin/biosynthesis , Basigin/genetics , Basigin/physiology , COVID-19/ethnology , COVID-19/genetics , Curcumin/pharmacology , Curcumin/therapeutic use , Europe/epidemiology , Exons/genetics , Gene Frequency , Genetic Predisposition to Disease , Genetic Variation , Humans , MicroRNAs/genetics , Mutation, Missense , Pharmacogenomic Testing , Protein Interaction Mapping , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/physiology , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/metabolism
4.
Elife ; 92020 11 09.
Article in English | MEDLINE | ID: covidwho-916539

ABSTRACT

Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/virology , Virus Attachment , Angiotensin-Converting Enzyme 2 , Basigin/physiology , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Enzymologic , Heparitin Sulfate/physiology , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Neuropilin-1/physiology , Oligopeptides/physiology , Organ Specificity , Pandemics , Pneumonia, Viral/epidemiology , Protein Binding , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Virus , Renin-Angiotensin System/physiology , Respiratory System/enzymology , SARS-CoV-2 , Sialic Acids/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL